PROPAGATION OF ELECTROMAGNETIC DISTURBANCES
ABOVE A PLANE SURFACE

V. V. Ivanov and G, P. Chernyli

Under certain assumptions, it is shown that the propagation problem for an electromagnetic
disturbance becomes self-similar, and the self-similarity parameters are determined. A
basis is given for the absence of reflection, and it is shown that it is equivalent to the bound-
ary conditions of M, A. Leontovich, Solutions of the propagation problem are obtained for
the various components of a pulsed signal field from a dipole of arbitrary orientation, and
their properties studied.

Solution of the problem involving propagation of an electromagnetic pulse along a plane-impedence
surface is of interest in the interpretation of observational results for electromagnetic fields varying over
times of the order of 10 usec. There is great interest in a determination of the impulse function for a pro-
pagation pattern which describes the distortion during the propagation of a 6-shaped pulse. The impulse
function has been studied [1-3] for the particular case of ground location of source and point of observation.
The source is assumed to be a point vertical dipole and the pattern is a plane surface with conductivity
o =1/4yr~! and dielectric constant .

The existence of a reciprocity theorem [4] means that for a complete solution of the problem involv-
ing the distortion of the field of an arbitrarily oriented dipole it is necessary to determine four functions:
Kyys Kpys Knhs and M, which are respectively the vertical component of a dipole polarized along the normal
to the surface, the vertical and horizontal components of a dipole polarized in the plane of polarization par-
allel to the ground surface and of a dipole polarized along the normal to the plane of propagation not con-
fined to the case of surface propagation.

Only the properties of the functions Ky, Ky, and Ky, are considered in the following because the
function M at practically all heights reduces to the corresponding Fresnelcoefficient in the time represen-
tation. The attenuation functions of the fields from point monochromatic dipoles have been introduced as
dimensionless quantities [4, 5]. Therefore the impulse functions have the dimension of inverse time. As
a consequence, if the solution of the propagation problem for a é~pulse signal possesses self-similarity,
the impulse function K(t) will not be self-similar and the transfer function

4
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1, Self-Similarity of Solution. Characteristic Time of Impulse Function. The signal at the point of
observation consists of a direct and reflected part. The properties of the direct signal are obvious: its
propagation function is 6(t — R/c), where R is the distance from source to point of observation and c is the
velocity of light in vacuum, In the case of a pattern symmetric with respect to the points of radiation and
detection, the signal depends only on the sum of the heights of the source and detector and not on each of
them individually. Tn the following, therefore, the source is assumed to be located on the surface at the
origin of a cylindrical coordinate system p, ¢, and z, with the z axis normal to the surface. In this case,
the problem contains one less dimensional parameter, The transfer function will be a function of two
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variables if the Leontovich condition [6] is applicable and displacement currents can be neglected. To be
specific, P(t) in this situation satisfies the equations

t
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For small heights, R =p + 2%/ 2p. We shift the variables in (1,1) to
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Equation (1.1) then takes the form
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We introduce the dimensionless variables
T =at, w=>by, zy=dz, b/dah =1, 2/b=1
Equation (1.3) is invariant with respect to such a substitution. Under those circumstances, one of the
guantities a, b, or d can be chosen arbitrarily, Setting a =t"!, we obtain
Pp, z, ) = P (1, pt2, zt')

i.e., the transfer function depends either on the quantities pt 2 and zta/2 or on arbitrary combinations of
them. In the following, we use the combinations

. oy Ys . z(’}’t)‘[’
A=) B= ae

It is then obvious that the characteristic times for variation of the impulse function will be

42 Ty Ye
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i.e., the analysis made above is valid if @? « 1 and z/p « 1. The condition o « 1 is satisfied at distance
greater than 300 m from the source for the usual terrestrial values of ¥. As shown below, the condition
z/p << 1 is of no practical importance because at heights for which it is satisfied the solution practically
agrees with the propagation of a plane-wave pulse, which is analyzed by means of the Fresnel coefficient

[71.
In the variables A and B, Eq, (1,3) takes the form
»F B &F A BF
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We clarify the meaning of the times t; and t,. With the source and detector located at ground level,
the parameter B = 0 and the transfer function is determined by the parameter A alone, which agrees with
the results in [1], i.e., it is sufficient to analyze the case of surface propagation of the signal to clarify the
meaning of A, On the other hand, when p —  so that z/p =const, A — ¢, B = const, i.e., the solution will
be determined by the parameter B, In that case, the dipole field near the point of observation differs little
from the field of a plane wave, Therefore the solution F(0, B) describes the distortion of a plane~wave
pulse during reflection from the vacuum—soil interface,

The reflected signal is radiated by currents produced in the soil having a direction which is related
both to the angle of incidence and the characteristic properties of the soil, Therefore it decreases until the
time when the current direction becomes parallel to the re-radiation direction, i.e., the condition
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EzillEp = gin P is satisfied (the subscript 1 indicates the field in the soil
and sin ¥ = z/p). However, E, = y~18E, /8t results from the boundary
condition E; = E/e, and we correspondingly have Ej ~ E, /() 1/2 from the
Leontovich condition, It then follows that the reflected signal falls during
a time determined by the condition V¥t sin ¢ =1, which agrees with the
condition B =1,

To explain the meaning of A, we note that, for signal propagation along
the surface, the only radiation managing to reach the point of observation
at the time t is that which is propagated within an ellipsoid defined by the
following condition: the distance from a point on the ellipsoid to the source
plus the distance from the point on the ellipsoid to the point of observation
is ct.

Fig. 1

For short times, the minor axis of the ellipsoid (Fig. 1) H;~ (ctp)l/z. On the segments AB and BC,
signal propagation occurs in purely wave fashion. Therefore the signal at the point of observation falls
during a time t such that ‘/7_/;: sin ~ 1, sin ¢ ~ H, (t)/p, i.e., using the expression H; ~ (ctp) 1/ﬁ, during a
time determined by the condition t (cy/Zp)1 2~1, which agrees with the condition A ~ 1.

Consequently, the transfer function will be self-similar in the variables A and B if the Leontovich
condition and displacement currents can be neglected.

The resultant expression for the characteristic times, t; =1/y sin? ¢ and t, = (2p/cy)1/2, show that
if a pattern must be analyzed on the basis of measurements, it is necessary to collect information with a
resolution At no worse than t, for the determination of distance and with a resolution no worse than t, for
the determination of height,

2. Modification of the Leontovich Boundary Condition, To analyze the effect of a surface on the sig-
nal, it is sufficient to determine the field at the surface itself. This problem is simpler than the determi-
nation of the fields in space because it contains one less parameter. There proceeds from space into the
surface a diffraction energy flux with properties which are determined by the distribution of field energy
in the neighborhood of the surface. At sufficiently large distances from the source, the surface itself dic-
tates the structure of the leakage flux and the fields in the neighborhood of the surface. The mathematical
expression of the situation are the Leontovich boundary conditions, which are equivalent to the following
principle: that flux leaks into the surface which the surface is in a condition to absorb without a reflec-
tion. To accomplish this, it is necessary that the angle of incidence equal the Brewster angle [7] or the
relation

E,(0) = (o] in)" E, (o) (2.1)
be satisfied,

However, this form of boundary condition is not always convenient because the quantity 82EZ/’8Z2
appearing in the wave equation at the surface z = 0 is not defined for z = 0. From the fact the field depends
only on (t — p/c)/p¥? for propagation along the surface, it follows that for ct — p <« p the equation div E = 0
takes the form

0, _ %, (2.2)

9z edt
Using Eq. (2.1), we then obtain
i

()]
9z .z=0 T e J o’z =0 [7Y (t—t')]l/‘

Since Eq. (2.2) is true in some neighborhood of the surface, it can be differentiated with respect to z.
Inaddition, because of the reciprocity theorem [4], condition (2.3) is also valid for Ep (z, t), i.e., we obtain
for 8%E, /8,7

0z c& o

(32E2) _ 1 OE, (2.4)
typ
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This condition enables one to analyze the propagation of a pulse along the surface without solving
the spatial problem. Note that since if is natural to study signal propagation as a function of time mea-
sured from the wave front, it is necessary to have a relation like Eq. (2.4) for the quantity (BzEz/azz) . e

Making the substitution of variables, we obtain

(ff.‘?._) ~ L PE 1O
2 f . 7 O® cp Ot

(2.5)

3. Propagation Function For a Plane~Wave Pulse {at great height), At sufficiently great heights, the
solution of the propagation problem for a é-pulse signal is a function of the single parameter B, In this
situation, the signal front can be considered to be plane. As seen in Fig. 2, cAt = Az sin § because we are
transforming to the equivalent space-time point from the viewpoint of self-similarity.

The wave equation (1.5) is satisfied identically for A = 0 and the condition (1.8), after using the rela-
tion cdt = sin ¥ dz, leads to

By
= (2F _ dB ) — B 3.1
F(B)= § B BB (3.1)

Solving (3.1) with the condition F(0) = 0, we obtain

265
F(B)=2{1—-"<
It is easy to show that the impulse function K(t) for a plane-wave signal corresponding to a given
F(B,) agrees with the functions which is obtained from the Fresnel coefficient for a wave polarized in the
plane of incidence by means of a Fourier transformation.

o) 02

;it/b 8

To explain the meaning of the propagation function, we consider the case of a plane-wave pulse inci-
dent along the normal to the surface. The boundary problem for soil currents j(x, t) takes the form

Y-8
@ ot 9

_ 3.3
j@0=0, j@On=08() 2>0 8:8)

{the x axis coincides with the normal from the vacuum into the medium),
The solutionof such aproblem takes the form

. oz Vx ;=%
i 0= gy o (— )

The reflected field at the point of observation at the time t — R/c is the field radiated by these cur-
rents

Eg=-L2 _Vy ‘gtexp[ 2y } zds (3.4)

¢ ot 21/;”.0 ¥y ey (t—z/0h

This equation contains the parameter x*y/4c%. It is easily seen that
z this is the ratio of the depth of a point at which the current is being considered
> to the skin-layer depth 6 = c{t/y)¥ 2, In the case ¢ =7/2, integration is carried
out along the line of sight, and one should therefore equate 6/sin ¥ — the effec-
tive skin-layer depth — with x, It then follows that in the general case of angles
i ¥ =1/2, the expression for the reflected field is obtained from (3.4) by the sub~-
# stitution ¥ — v sin? ¢, s0 that in the general case

47

8 2VB : i d
K(t)e= — \exp|— _S2L_FeE z. (3.5)
Fig. 2 (®) 9t VEOS [ T—= 5%
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This equation reduces to {3.2) by the substitution z = x2/{1 — x).

We discuss the question of the applicability of the equation obtained. It is valid in cases where the
slope angle of the wave front changes little over significant times, i.e., ¥ 'Ap < 1. Since y~1Ay~ z7' Az,
then z™ 1Az ~ Atepz~?, i.e., the signal can be considered as a plane wave up to the time ty ~ z¥cp.  remains
a plane wave for all times t < 1/y sinZ, if z > (p%/v) V4 .

The propagation function being discussed describes the behavior for reflection of the vertical compo-
nent of the field of a vertical dipole. For a plane-wave signal, however, the z and p components of the field
are related through the expression Ep =-—E tg¥; tg¥ ~ sin ¥ for small angles, Thus, the propagation func-
tion for the p component of the field of a vertical dipole, Khv’ is equal to —Kyy sin ¥. Because of the re-
ciprocity theorem, the function Ky also describes the behavior of the z component of the field of the di~
pole oriented along p. The propagation function for the p component of such a dipole, Ky is equal to - Khy
sin ¥ = Kyy sin %,

4. Propagation Function for a Pulse along a Plane Surface. Using the boundary condition (2.5), the
wave propagation (1.1) can be represented in the form

1 &R 1 #F 1 aF 1 9F
T T m W T wa T =0 @1

From the self-similarity properties of the solution it follows that F(t, p) is a function of the single
parameter A = {t — p/c) ('yc/Zp)‘/Zﬁ and therefore the quantities 8F /6p and 8F /0t in (4.1) can be omitted.
Transforming next to the self-similar variable, we obtain

2 OF

t @F
A T oA

8F
305+ 4 =0 4.2)

Solving (4.2) for the conditions

F(O)=0, (3F]04), =0, limF(4)=2

we obtain
F(A) =21 — 47 (4.3)

We then obtain for the propagation function an expression which agrees with that obtained in {1]:
Kpp = _‘.?_'Lexp:ﬁ-”l (4.4)
p

For short times t « t,, Ky ~teyp~!, The nature of this characteristic can be understood qualitative -
ly from the following considerations. Because of Huygens principle, the function K__ at the point C (Fig,
1) can be expressed through its value at an intermediate surface, for which it is convenient to choose a
plane perpendicular to the interface and to the direction of propagation. Then

Koty _ S Kug(t) Kga(t—1)
Rac WS R ypRpe dzdz

Since ct = 2VRY/4 + p? — R, cdt ~ 4pdo/R. For short times, Ky ¢ ~ zy"/ YRt!/?, 7 ~ 2cR)Y?, sothat

t

e N__';_'_S' dx __ tex
A= JVii—=n ¢

One can use the Leontovich conditions to determine the other propagation functions. From (2.1) and
(4.4) we obtain

!, 1
8 4aA” Se_sz. zdx (4.5)

Ky = —5p VE Viegz

Since Eq. (2.1) is also valid for Ky and Kppe we then have
Koy = 2p_°(1 —24%) ™ (4.6)
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If Ky 18 of constant sign and
[vod
{ Kn(hrdt=2
0

Kpv(t) and Kpp(t) go to zero for t ~ t, and
( Kotyat = Kmyae=0
i} (1]

These characteristics result from the fact that the horizontal components of the field lead to the
creation of surface currents. Since these currents must not lead to the accumulation of charge in any re-
gion of the plane they must be of changing sign and of such a nature that the time integral which gives the
field of a static dipole is zero.

5. Propagation Function for a Pulse Signal with Point of Observation at Small Heights. From the fact
that the solution is self-similar in the parameters A and B, it follows that the heights can be considered
small, i.e., the propagation function can be expanded in series in z up to a height z = ap. Such an expan-
sion is of the form

- oK 22 [ 02K
K(t 2)=K(t 0)+z ( = >z=0+ 7("3}2‘)120 .. (5.1)

Only quantities defined at the surface z = 0 enter in (5.1), i.e., they can be determined from the value
of the function K(t, 0) by means of the Leontovich boundary conditions. For the z component of the field of
a vertical dipole, a comparison of the second and third terms shows that the third term is small in compar-
ison with the second; we then obtain for K(t, z)

V2o

8K (8, 2) = 24674 4 Ve sin P (4)
. (5.2)
: oy d
@A) = 1 — BA, (A%) 4 44, (AY),  I,(5) = §e‘* e
For the functions K (t, z) and K, (t, z), we obtain
I/‘
Kpp* = (.%fr) Kpp= ® (4) + asinpd, (4) 4 -2 sin? yid, (4) (5.3)
D (A) = oA (A) — ATL (A7),  Oy(A) = (24° — 3) 4™
D, (A) = I, (A?) — 29A4°], (A2) - 384%], (A?) — 8A%I, (42)
L Ky (2, 7) = Dy (A) + 8 V2l sin @y (4)

Dy (4) = (1 —24% ™,  @,(4) = A7(3.25420,(A%) — 1.12],(42) — A%, (4?)) (5.4)

Figure 3 shows the functions t,Kyy(t, z), K*y, p/cKyp(t, z) for 2y =0, 2, =0.5km, z, =1 km and « =
3.1073,

A general property of the resultant functions is a fundamental feature at short times which is associa-
ted with wave propagation. Since

Knp = —siny K, K,y =~ sin? $K,,, sin <1

the time region in which the wave mode sets in is correspondingly reduced and the term in the expansion in
z corresponding to wave propagation contains z to an increasingly higher power. For Khh(t, z), therefore,
one can limit oneself to terms linear in z and reject the wave effects.

6. General Formulas for Pulsed Signal Field in Space. In order to find an expression for the field in
space, we use the Huygens principle or the Dyson equation [8], which is equivalent to it in this case, In fact
the Dyson equation for interaction with a surface has the form

K*(1,2) = K°(1,2) - SK* (1,3) T (3) K° (1,2)dT (3)
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where K*(1, 2) is the complete function for propagation from 1 into 2, K°(1, 2) is the propagation function
without interaction, and T(3) is the vortex portion. In the present case, this equation is equivalent to

Kx(1,2) =2l SS K+ (1,3 T (3) 22 B0l 9 g5 gy (6.1)

Integration is carried out over the surface of the ground, point 1 is the source, point 2 the detector,
and point 3 the variable of integration. On the other hand, the Green®s function which expresses the Huygens-
Fresnel principle is of the form [4]

U(R, t)== SS{ Y, F) )s S —Rnl9) gg ar (6.2)

It is easily seen that Eq. (6.1) agrees with Eq. (6.2) if I'(3) = 8(:)/8n. In the case under consideration,
the field at the point of observation is

E(R, 1) =1/0K (p, 2 1)

and the inequalities
sinth <€ 1, of — Ryy << Ryy
are satisfied.

Integrating (6.2) over tf, we obtain (see Fig. 4 for notation)

E@)- (45 _ b 6

0=p + Ry — Ry,

Thus far, the results are valid for any field component and for a dipole of arbitrary orientation, How-
ever, integration over ¢ can be carried out only in specifying the expression for K(t). Taking for K(t) the
function Kyy(t) from (4,4) and using (2.3), we transform Eq. {6.3) to the form

T Xt
—g 2 2,2 dz do
Ez2=——SSex(——x—“ e
( ) Rip J P 2R 9312) VB(T—JJM()) (6.4)
It is easy to show that the integral appearing in (6.4)
¢ ol da ¢ cajaf AV
B<y>=§e Ve=s =y ()
after which Eq. (6.4) can be written as
— 1
=4 8 Vryising Ty aysindy dz
E,(2)= R T Ya Sexp[—— % x __x):, T (6.5)
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This equation agrees with the equation obtained {3] by a Fourier
transform of the Sommerfeld solution [5].

4 Z
Z{ 7] To obtain equations for the function Khv(t, z) and Ky, ¢, 7}, we use
£z i Eq. (2.2) and obtain the following relations:
/ G z
K. (',
W Kip (8, 3) = S_"Z?'(zt'—) ~ sin YKy, (£, 2) (6.8)
@
Fig. 4

Kpnt, z}_iiﬂﬁi— St(Bsm\p —«——K )dt’-;—smzprw(i zy {8.,7)
g0 1]

By simple transformations, it is easy to obtain from (6.6)

2 Jexp[—at 42+ 125 ]/iidj-z 6.8)

Kot 2) = o V:m S(Az +1
In the general case, Eg. (6.7) does not reduce to an expression convenient for application. It is easy
to show, however, that for small ¥ when

#K 1 K, 1 0K

o % g TP
922 T o a3 oep Ot

Eq. (5.4) is obtained from (6.7).

LITERATURE CITED

1. J. R. Wait, ®T'ransient field of a vertical dipole over a homogeneous curved ground,® Canad. J. Phys.,
34, No. 1 (1956).

2. J. R. Wait, "A note on the propagation of electromagnetic pulses over the earth’s surface,® Canad. J.
Phys., 40, No. 9 (1962).

3. Vv, V. Novikov and G, I, Makarov,?Propagation of pulsed signals over a plane homogeneous ground
surface,"Radiotekhnika i Elektronika, 6, No., 5 (1961)

4, E. L. Feinberg, Propagation of Radio Waves along the Earth's Surface [in Russian}, Izd-vo AN SS8R,
Mosecow (1961),

5, P. Frank and R, Von Mises, Differential and Integral Equations of Mathematical Physics [Russian
translation], Vol, 2, ONTI, Glav.Red. Obshchetekin. Lit., Leningrad (1937).

6, L. D, Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Gostekhizdat,
Moscow (1957).

7. R, S. Landberg, Course in General Physics, Vol, 3, Optics [in Russian], Gostekhizdat, Moscow (1957),

8. A, I, Akhiezer and V. B. Berestetskii, Quantum Electrodynamics [in Russian}, Gostekhizdat, Moscow
(1963).

733



