
P R O P A G A T I O N  O F  E L E C T R O M A G N E T I C  

A B O V E  A P L A N E  S U R F A C E  

V. V. I v a n o v  a n d  G. Po C h e r n y i  

D I S T  U R B A N C E S  

Under certain assumptions,  it is shown that the propagation problem for an e lectromagnet ic  
dis turbance becomes se l f - s imi la r ,  and the se l f - s imi la r i ty  pa rame te r s  are  determined.  A 
basis is given for the absence of reflection, and it is shown that it is equivalent to the bound- 
ary conditions of M. A~ Leontovich. Solutions of the propagation problem are obtained for 
the var ious  components of a pulsed signal field f rom a dipole of a rb i t ra ry  orientation, and 
their  proper t ies  studied~ 

Solution of the problem involving propagation of an e lect romagnet ic  pulse along a planeqmpedence 
surface is of interest  in the interpretat ion of observat ional  resu l t s  for e lectromagnet ic  fields varying over  
t imes of the o rde r  of 10 #sec .  There  is great  interest  in a determination of the impulse function for a pro-  
pagation pattern which descr ibes  the distort ion during the propagation of a 5-shaped pulse. The impulse 
function has been studied [1-3] for the par t icu lar  case of ground location of source and point of observation.  
The source is assumed to be a point ver t ical  dipole and the pattern is a plane surface  with conductivity 

= 1/47~ -1 and dielectr ic  constant  e. 

The existence of a rec iproc i ty  theorem [4] means that for a complete solution of the problem involv- 
ing the distort ion of the field of an a rb i t ra r i ly  oriented dipole it is n e c e s s a r y  to determine four functions: 
Kvv, Khv , Khh, and M, which are  respect ively  the ver t ical  component of a dipole polar ized along the normal  
to the surface,  the ver t ical  and horizontal  components of a dipole polarized in the plane of polarization par-  
allel to the ground surface and of a dipole polar ized along the normal  to the plane of propagation not con- 
fined to the case of surface  propagation~ 

Only the proper t ies  of the functions Kvv , Khv, and Khh are considered in the following because the 
function M at pract ical ly  all heights reduces  to the corresponding Fresnelcoeff ic ient  in the t ime r ep resen -  
tation. The attenuation functions of the fields f rom point monochromat ic  dipoles have been introduced as 
dimensionless  quantities [4, 5]~ Therefore  the impulse functions have the dimension of inverse  t ime. As 
a consequence, if the solution of the propagation problem for a 5-pulse signal possesses  se l f - s imi la r i ty ,  
the impulse function K(t) will not be se l f - s imi la r  and the t r ans fe r  function 

t 

(t) ----- I K (l') P dt' 
- - o o  

1. Self-Similari ty of Solution. Character is t ic  Time of Impulse Function~ The signal at the point of 
observation consis ts  of a di rect  and ref lected part.  The proper t ies  of the direct  signal are obvious: its 
propagation function is 6(t - R/c),  where R is the distance f rom source  to point of observation and c is the 
velocity of light in vacuum. In the case of a pattern symmet r i c  with respect  to the points of radiation and 
detection, the signal depends only on the sum of the heights of the source  and detector  and not on each of 
them individually. In the following, therefore ,  the source  is assumed to be located on the surface at the 
origin of a cyl indrical  coordinate sys tem p, ~, and z, with the z axis normal  to the surface.  In this case,  
the problem contains one less  dimensional pa ramete r .  The t rans fe r  function will be a function of two 
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variables  if the Leontovich condition [6] is applicable and displacement  cur ren t s  can be neglected.  To be 
specific,  P(t) in this situation sa t is f ies  the equations 

t 

at - - - i -  Oz ~ p ap p ~ "-~ O, \ az ]z=o - -  --c- J [ " ~ v j z = e  [u~: (t - -  t ' ) l  v" 
O 

For  small  heights, R =p  + z~/2p.  We shift the var iables  in (1.1) to 

v = t - -  P z~ __t_L. p__p z~ c 2 - ~ '  ~ - -  ' r + ~pe ( 1 . 2 )  

Equation (1.1) then takes the fo rm 

O~P 4 O~P 2z a~p 2 OP 
Oz~ c a av O~] cp Oz Ov cp ~ -  = 0 

f o J , \  i t '(  a,J  1 d,, 
(1.3) 

We introduce the dimensionless  var iables  

�9 1 =  a'r Tl1=b~ I, z l ~ d z ,  b / d a ' l , =  t ,  a s / b  = t 

Equation (1.3) is invariant  with respec t  to such a substitution. Lhder those c i r cums tances ,  one of the 
quantities a, b, o r  d can be chosen a rb i t ra r i ly .  Setting a = t -~, we obtain 

P (p, z, t ) =  P (t, pt -~, ztV,) 

i.e.,  the t r ans fe r  function depends ei ther  on the quantities pt -2 and zt ~/2 or  on a rb i t r a ry  combinations of 
them. In the following, we use the combinations 

I cT ~h z (7t) % 
B =  zp (1.4) 

It is then obvious that the charac te r i s t i c  t imes for variat ion of the impulse function will be 

4o~ - ( c ~'/, 

i.e.,  the analysis  made above is valid if c~ 2 << 1 and z/p << 1. The condition c~ 2 << 1 is satisfied at dis tance 
g r ea t e r  than 300 m f rom the source  for the usual t e r r e s t r i a l  values of ?. As shown below, the condition 
z/p << 1 is of no pract ical  importance because at heights for which it is satisfied the solution pract ical ly  
agrees  with the propagation of a plane-wave pulse, which is analyzed by means of the Fresne l  coefficient 
[7]. 

In the var iables  A and B, Eq. (1.3) takes the fo rm 

OF 02F . B O~F A O~F 
T 2 -  q- A T ~ r  § 2 0 A  OB j- 2 ~B ~ = 0 

A 

B=o 0 ( OA'Z JB=-o [• (A ~ :4')I% ' 

(1.5) 

We clar i fy  the meaning of the t imes t 1 and t 2. With the source  and detector  located at ground level, 
the pa rame te r  B = 0 and the t r ans fe r  function is determined by the pa ramete r  A alone, which agrees  with 
the resul ts  in [1], i.e., it is sufficient to analyze the case  of surface  propagation of the signal to clar i fy the 
meaning of A. On the other  hand, when p ~ r so that z/p = const,  A ~ 0, B = const,  i.e.,  the solution will 
be determined by the pa rame te r  B~ In that case,  the dipole field nea r  the point of observat ion differs little 
f rom the field of a plane wave. There fo re  the solution F(0, B) descr ibes  the distort ion of a plane-wave 
pulse during reflection f rom the v a c u u m - s o i l  interface.  

The ref lected signal is radiated by cur ren ts  produced in the soil having a direction which is related 
both to the angle of incidence and the charac te r i s t i c  proper t ies  of the soil. There fo re  it dec reases  until the 
t ime when the cur ren t  direction becomes  paral lel  to the re - rad ia t ion  direction,  i.e., the condition 
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Fig. i 

Ezi /E  p = sin ~b is satisfied (the subscr ipt  1 indicates the field in the soil 
and sin r = z / p ) .  However, Ez, = 7-18Ez/Ot resul ts  f rom the boundary 
condition E I = E/e ,  and we correspondingly have Ep ~ Ez/(Tt) 1/~ f rom the 
Leontovich condition. It then follows that the ref lected signal falls during 
a t ime determined by the condition ~f-~--sin r = 1, which agrees  with the 
condition B = 1. 

To explain the meaning of A, we note that, for signal propagation along 
the surface,  the only radiation managing to reach the point of observation 
at the t ime t is that which is propagated within an ellipsoid defined by the 
following condition: the distance f rom a point on the ellipsoid to the source  
plus the distance f rom the point on the ellipsoid to the point of observation 
is ct. 

For  short  t imes,  the minor  axis of the ellipsoid (Fig. 1) H0~ (ctp)l/2.  On the segments  AB and BC, 
signal propagation occurs  in purely wave fashion. Therefore  the signal at the point of observation falls 
during a t ime t such that ~77t sin r ~ 1, sin r ~ H0 (t)/p, i.e.,  using the express ion H 0 ~ (ctp)I~, during a 
t ime determined by the condition t (c7/2p) 1/2 ~ 1, which agrees  with the condition A ~ 1. 

Consequently, the t r ans fe r  function will be se l f - s imi la r  in the var iables  A and B if the Leontovich 
condition and displacement  cur ren t s  can be neglected.  

The resul tant  expression for the charac te r i s t i c  t imes,  t~ = 1/~/sin 2 r and t 2 = (2p/cT)l/2, show that 
if a pattern must  be analyzed on the basis  of measurements ,  it is n e c e s s a r y  to collect information with a 
resolution At no worse than t 2 for the determination of distance and with a resolution no worse than t 1 for  
the determination of height. 

2. Modification of the Leontovich Boundary Condition. To analyze the effect of a surface on the s ig-  
nal, it is sufficient to determine the field at the surface  itself. This problem is s impler  than the de te rmi-  
nation of the fields in space because it contains one less  pa ramete r .  There  proceeds f rom space into the 
surface a diffraction energy flux with proper t ies  which are determined by the distribution of field energy 
in the neighborhood of the surface~ At sufficiently large  distances f rom the source ,  the surface i tself  dic-  
tates the s t ruc ture  of the leakage flux and the fields in the neighborhood of the surface.  The mathematical  
expression of the situation are  the Leontovich boundary conditions, which are  equivalent to the following 
principle:  that flux leaks into the surface  which the surface  is in a condition to absorb without a re f lec -  
tion. To accomplish this, it is neces sa ry  that the angle of incidence equal the Brewster  angle [7] or  the 
relation 

Ep (r ---- (o) / iT) ']= E z (co) (2.1) 

be satisfied. 

However,  this form of boundary condition is not always convenient because the quantity D2Ez/Oz 2 
appearing in the wave equation at the surface  z = 0 is not defined for  z = 0. F r o m  the fact the field depends 
only on (t - p / c ) / p l / 2  for propagation along the surface,  it follows that for ct - p << p the equation div E = 0 
takes the fo rm 

Using Eq. (2.1), we then obtain 

OE z OE~ (2.2) 
Oz cot 

t 

~, O z ' ] ~ o - ~ ~  Ot'2 Jz=o [gT(t--t ')] V= 
o 

Since Eq. (2~ is t rue in some neighborhood of the surface,  it can be differentiated with respec t  to z. 
In addition, because of the rec iproc i ty  theorem [4], condition (2~ is also valid for Ep(Z, t), i .e.,  we obtain 
for O2Ez/Sz z 

(a 'Ez ~ t 0~z 
--~-z, / t  , p =  ~:c~ 0 7  (2.4) 
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This condition enables one to analyze the propagation of a pulse along the surface  without solving 
the spatial  problem. Note that since it is natural  to study signal propagation as a function of t ime mea-  
sured f rom the wave front, it is n e c e s s a r y  to have a relation like Eq. (2.4) for the quantity (82Ez/8Z2) T, p" 

Making the substitution of var iables ,  we obtain 

( O2E~ _ i a3E i OE (2.5) 

3. Propagation Function For  a Plane-Wave Pulse (at g rea t  height)~ At sufficiently g rea t  heights, the 
solution of the propagation problem for  a 6-pulse signal is a function of the single pa r ame te r  B. In this 
situation, the signal front can be considered to be plane. As seen in Fig. 2, c a t  = Az sin r because we are  
t ransforming  to the equivalent space - t ime  point f rom the viewpoint of se l f - s imi la r i ty .  

The wave equation (1.5) is sat isf ied identically for  A := 0 and the condition (1,6), after  using the r e l a -  
tion cdt = sin r dz, leads to 

BI 

I dF dB:' ]31 = B ~ (3.1) 
F (Bx) = dB~' [~ (B:-- B:')iV ~ ' 

0 

Solving (3.1) with the condition F(0) = 0, we obtain 

~__~2eB* ~e-z~dz) F(B:)  -- 2 (1 (3.2) 
\ 

VE 

It is easy to show that the impulse function K(t) for a plane-wave signal corresponding to a given 
F(B 1) agrees  with the functions which is obtained f rom the F resne l  coefficient for a wave polar ized in the 
plane of incidence by means of a Four i e r  t ransformat ion .  

To explain the meaning of the propagation function, we consider  the case of a plane-wa~e pulse inci- 
dent along the normal  to the surface .  The boundary problem for soil cu r ren t s  j(x, t) takes the fo rm 

"r.ai ay 
c~ at = ~  (3.3) 

](x, 0) = 0 ,  ~(0, t) = 6(t), x % 0  

(the x axis coincides with the no rma l  f rom the vacuum into the medium). 

The solutionof such ap rob lem takes the form 

exp t -  ~ ;  

The ref lected field at the point of observation at the t ime t - R/c is the field radiated by these cur -  
rents  

c~ 

I [ I E(t) ct at~ 2V~V~c oexp - - ~ r  (t-z/c)'/~ 
(3.4) 

,t z: 

g 

Fig. 2 

This equation contains the pa ramete r  x 2 T/4c2t. It is easily seen that 
this is the rat io of the depth of a l~oint at which the cur ren t  is being considered 
to the sk in- layer  depth 6 = c(t/T) y 2 In the case  r ~ ~/2,  integration is c a r r i ed  
out along the line of sight, and one should therefore  equate 5 /s in  r - the effec-  
tive sk in- layer  d e p t h -  with x. It then follows that in the general  case  of angles 
r ~ 7r/2, the expression for the ref lected field is obtained f rom (3~ by the sub- 
stitution 7 --~ 7 sin2 4, so that in the general  case  

2 ioxp [ K(t)== at V~- ~ ]--~: (i :~,/~ (3.5) 
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This  equation reduces  to (3~ by the substi tut ion z = xZ/(1 - x). 

We d i scuss  the question of the applicabi l i ty  of the equation obtained~ I t  is valid in cases  where  the 
slope angle of the wave f ront  changes  l i t t le  ove r  significant  t i m e s ,  i .e . ,  r162 << 1. Since r 1 6 2  z- lAz,  
then z-~Az ~ Atepz -2, i .e . ,  the signal  can be cons idered  as  a plane wave up to the t ime  t o ~ z2/cp. It r e m a i n s  
a plane wave for  all t imes  t << 1/Y sin2r if z >> (p3e/T)1/4. 

The propagat ion function being d iscussed  desc r ibe s  the behavior  for  ref lect ion of the ve r t i ca l  compo-  
nent of the field of a ve r t i ca l  dipole. Fo r  a p lane-wave  signal,  however ,  the z and p components  of the field 
a r e  re la ted  through the express ion  Ep = - E z t g r  tgr ~ sin r for  smal l  angles.  Thus,  the propagat ion func- 
tion for  the p component  of the field of a ve r t i ca l  dipole, Khv, is equal to - K v v  sin r Because of the r e -  
c iproc i ty  theo rem,  the function Khv also desc r ibe s  the behavior  of the z component  of the field of the di-  
pole or iented  along p. The propagat ion function fo r  the p component  of such a dipole, Khh, is equal to - K h v "  
sin r = Kvv sin 2r  

4. Propagat ion Function for  a Ptflse along a Plane Surface.  
wave propagat ion (1.1) can be r e p r e s e n t e d  in the f o r m  

Using the boundary condition (2.5), the 

t ~ F  t ~ F  t OF t OF F 
c2 ot~ c~ Or3 cp ot + p op p~ = 0 (4.1) 

F r o m  the s e l f - s i m i l a r i t y  p rope r t i e s  of the solution it follows that  F(t, p) is a function of the single 
p a r a m e t e r  A = ( t -  p / c )  (y~c/t2p)l/2~ and the re fo re  the quant i t ies  aF/ap  and 0F/0 t  in (4.1) can be omit ted.  
T r a n s f o r m i n g  next  to the s e l f - s i m i l a r  va r i ab le ,  we obtain 

OF A~ O~F t ~F 
2-O-X, § ~-h-r + T-g~-r  = 0 

Solving (4~ for  the conditions 

(4,2) 

F ( 0 ) =  0, (OF]OA)A=~=O , l i m F ( A ) =  2 

we obtain 

F (A) = 2 (t - -  e -A') 

We then obtain for  the propagat ion function an express ion  which ag ree s  with that  obtained in [1]: 

(4.3) 

K~ = 2 ~  exp (4.4) 
Z~ 

For  shor t  t i m e s  t << t 2, Kvv ~ t cyp - I .  The na tu re  of this  c h a r a c t e r i s t i c  can be understood qua l i t a t i ve -  
ly f r o m  the following cons idera t ions .  Because of Huygens pr inciple ,  the function Kvv at the point C (Fig. 
1) can be  e x p r e s s e d  through its  vMue at an in te rmedia te  su r face ,  for  which it is convenient  to choose a 
plane pe rpend icu la r  to the in te r face  and to the di rect ion of propagat ion.  Then 

(,) r162 KA, (,') ( ' - - " )  
dx dz 

RA C = ~J RABRBC 

Since ct = 2,fR2/4 + p 2 _  R, cdt ~ 4pdp/R.  F o r  shor t  t imes ,  KAC ~ zT~/2/Rt I/2, z ~ (2cRt) 1/2, so that  

t 

T J ~_~xxdZ tc~ K ac ~ - f f -  ( t  - -  z )  P 
0 

One can use  the Leontovich conditions to de t e rmine  the o ther  propagat ion functions.  F r o m  (2.1) and 
(4.4) we obtain 

i 

0 4aA% I gr,~ = Ot V'~ e-~'a'" Vl~dz--~ (4;5) 
0 

Since Eq~ (2.1) is also valid for  Khv and Khh, we then have 

2c (t - -  2A*) e -A' (4.6) K ~  = -~- 
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If  Khv i s  of  c o n s t a n t  s ign  and 

• K,~,~ (t) dt  = 2 
0 

Khv(t) and Khh(t) go to zero for t ~ t 2 and 

co oo 

I K h , ( t ) d t  ----- I Kh~( t )d t  = 0 
0 0 

T h e s e  c h a r a c t e r i s t i c s  r e s u l t  f r o m  the  fac t  t ha t  the  h o r i z o n t a l  c o m p o n e n t s  of the  f i e ld  l e a d  to  t he  
c r e a t i o n  of s u r f a c e  c u r r e n t s .  S ince  t h e s e  c u r r e n t s  m u s t  no t  l e a d  to  t he  a c c u m u l a t i o n  of c h a r g e  in any r e -  
gion of the  p l a n e  they  m u s t  be  of chang ing  s ign  and of  such  a n a t u r e  t ha t  t h e  t i m e  i n t e g r a l  which g i v e s  the  
f i e ld  of a s t a t i c  d ipo l e  is  z e r o .  

5. P r o p a g a t i o n  Func t ion  fo r  a P u l s e  S igna l  with Po in t  of  O b s e r v a t i o n  at S m a l l  He igh t s~  F r o m  the  f ac t  
t ha t  the  s o l u t i o n  is  s e l f - s i m i l a r  in the  p a r a m e t e r s  A and B, i t  fo l lows  tha t  the  h e i g h t s  can b e  c o n s i d e r e d  
s m a l l ,  i .eo,  t he  p r o p a g a t i o n  funct ion  can  be  e x p a n d e d  in s e r i e s  in z up to a he igh t  z _< ~p .  Such an e x p a n -  
s ion  i s  of t he  f o r m  

K (t, z) = K (t O) ~- z + -~- l . ~ / ~ =  ~ + . . .  
Z ~ O  

(5.i) 

Only q u a n t i t i e s  de f i ned  at t he  s u r f a c e  z = 0 e n t e r  in (5.1), i . e . ,  t hey  can be  d e t e r m i n e d  f r o m  the  v a l u e  
of the  funct ion  K( t ,  0) by m e a n s  of the  Leon tov i c h  b o u n d a r y  c o n d i t i o n s .  F o r  the  z c o m p o n e n t  of the  f i e ld  of 
a v e r t i c a l  d ipo l e ,  a c o m p a r i s o n  of t he  s e c o n d  and t h i r d  t e r m s  shows  t ha t  the  t h i r d  t e r m  is  s m a l l  in c o m p a r -  
i son  with t he  second ;  we then ob ta in  fo r  Kvv(t  , z) 

]/-2 a . QKvv (t, z) -= 2Ae -A' ~- ~ sm ~ (A) 

l 

l e .... V d~ 
0 

F o r  the  func t ions  Khv(t ,  z) and Khh(t , z), we ob ta in  

(5.2) 

K,,v* -~ ~ )  K ~  = (Do (A) ~- ~ sin ~qb, (A) + -2- sin ~ 9gPs (A) 

(I)o (A)  = ~/~A'/~I~ (A s) - -  A%Ia (AS), O~ (A) = (2A ~ - -  3) Ae ~A~ 

(I)s ( A ) = Io ( A s) - -  29 ASI~ ( A ~) ~- 38A~I~ ( A :~) - -  8A6Is  ( A s) 

~ -  Khh (t ,  z) = qba (A) § 8 1/2n-1:r sin ~@4 (A) 

(5.3) 

(I)3 (A) = (l  - -  2A s) e - ~ ,  (I)a (A) = AV2(3 .25A2Ia(A  ~) - -  i . t2[~ (A s) - -  AaIs(A2))  (5.4) 

F i g u r e  3 shows  the  func t ions  t2Kvv(t , z), K*hv , p /CKhh( t  , z) fo r  z 0 = 0, z 1 = 0.5 k m ,  z 2 = 1 k m  and ~ = 
3 . 1 0  -3. 

A g e n e r a l  p r o p e r t y  of the  r e s u l t a n t  func t ions  i s  a f u n d a m e n t a l  f e a t u r e  at  s h o r t  t i m e s  which is  a s s o c i a -  
t ed  with wave  p r o p a g a t i o n .  S ince  

Kn, ~ - -s in  ~ K~,  Khh ~ sin 2 ~Kw, sin ~ ~ t 

the  t i m e  r e g i o n  in which  the  wave  m o d e  s e t s  in i s  c o r r e s p o n d i n g l y  r e d u c e d  and the  t e r m  in the  expans ion  in 
z c o r r e s p o n d i n g  to wave  p r o p a g a t i o n  c o n t a i n s  z to an i n c r e a s i n g l y  h i g h e r  p o w e r .  F o r  Khh(t,  z), t h e r e f o r e ,  
one can l i m i t  o n e s e l f  to t e r m s  l i n e a r  in z and r e j e c t  the  wave  e f f e c t s .  

6__: G e n e r a l  F o r m u l a s  fo r  P u l s e d  S igna l  F i e l d  in Space .  In o r d e r  to f ind an e x p r e s s i o n  fo r  the  f i e ld  in 
s p a c e ,  we use  t he  Huygens  p r i n c i p l e  o r  t he  Dyson equa t ion  [8], which i s  e q u i v a l e n t  to i t  in t h i s  c a s e .  In f ac t  
the  Dyson equa t ion  for  i n t e r a c t i o n  with a s u r f a c e  has  t he  f o r m  

(1,2) ~- S K* (1,3) r (3) K ~ (1 ,2 )dr  (3) K* (1 ~2) K o 
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K%, 
\ 

7 

Z 

Fig. 3 

where  K*(1, 2) is the comple te  function for  propagat ion f r o m  1 into 2, K*(1, 2) is  the propagat ion function 
without in teract ion,  and r(3) is the vo r t ex  port ion.  In the p re sen t  case ,  this equation is equivalent to 

K*(I'2)----6(t--R":c)~Ii ~' If K*(l'3)F(3) 8(t'-n~/O (6.~) 

Integrat ion is c a r r i e d  out ove r  the su r face  of the ground, point 1 is the source ,  point 2 the detector ,  
and point 3 the va r i ab l e  of integration.  On the o ther  hand, the Greenfs  function which e x p r e s s e s  the Huygens-  
F r e sne l  pr inc ip le  is of the f o r m  [4] 

U (R, t) =: Sf ( ou (R~8, :) ) 6 ( : - -  ~ /  c) dS dt" (6.2) 
On S R~ 

It  is eas i ly  seen that  Eq. (6.1) ag rees  with Eq. (6.2) if F(3) = 8(. )/~n. In the case  under considera t ion,  
the field at the point of observa t ion  is 

and the inequali t ies  

a r e  sa t i s f ied .  

E (R, t) = 1 ~ o K ( p ,  z, t) 

s i n ~ , ~ i ,  ct - -  Rl~ ~ R u  

In tegra t ing  (6.2) ove r  t !, we obtain (see Fig.  4 for  notation) 

~=o 0RI2 (6.3) 
0 

0 ----- p + R~a - -  RI~ 

Thus far ,  the r e su l t s  a r e  valid for any field component  and for  a dipole of a r b i t r a r y  or ientat ion.  How- 
ever ,  in tegrat ion over  ~ can be c a r r i e d  out only in specifying the express ion  for  K(t).  Taking for  K(t) the 
function Kvv(t)  f r o m  (4.4) and using (2.3), we t r a n s f o r m  Eq. (6.3) to the fo rm 

E ~ ( 2 ) = - - ~  exp - -  2R12 0R-~~" ~0(~- -x - -0 )  (6.4) 
0 0 

It is easy  to show that  the in tegra l  appear ing  in (6.4) 

y Y 

B(y) = Se -~:~ ~ _ ~e_~:~: A ~:~do: 
0 (} 

af te r  which Eq. (6.4) can be writ ten as 
1 

-- i 0 W~sin ~p ~ [ x~t~cT x~_LT sin~_~] dz (6.5) 
Eg (2) ----- R12 ot ~ - -  j exp --  zp 4 (i -- x) J (t -- x)'t~ 

0 
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This  equation agrees  with the equation obtained [3] by a Four i e r  
t r a n s f o r m  of the Sommerfe ld  solution [5]. 

To obtain equations for the function Khv(t, z) and Khh(t, z), we use 
Eq. (2.2) and obtain the following re la t ions :  

t 
OK (t', 

K~v(t, z) =- ~ vv~,~z Z) d t ' - -  sin~Kvv(t,  z) (6.6) 
o 

Fig. 4 ~ ~ O~Kvv(t", z) t 
K ~ ( t ,  z) = j j  ~ 2sin~p oz - -  Kv,~ dt ~-~ sin~r z) (6.7) 

o o  o 

By simple t rans format ions ,  it  is easy to obtain f rom (6.6) 

l 

K h ~ ( t ' z ) =  Ot g-~7 A 2 + T L - ~  z exp - - x  2 A2-F-V--x - )zi-- x 

In the general  case,  Eq. (6.7) does not reduce  to an express ion  convenient fo r  application~ It is easy 
to show, however,  that  for  smal l  r when 

O~Kvv t 03Kw ~. OKvv 
Oz 2 N ,rc2 Ot a ~ cp Ot 

Eq~ (5.4) is obtained f rom (6.7), 
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